Chilkat HOME Android™ AutoIt C C# C++ Chilkat2-Python CkPython Classic ASP DataFlex Delphi DLL Go Java Node.js Objective-C PHP Extension Perl PowerBuilder PowerShell PureBasic Ruby SQL Server Swift Tcl Unicode C Unicode C++ VB.NET VBScript Visual Basic 6.0 Visual FoxPro Xojo Plugin
(Unicode C++) Amazon Rekognition - Detect Faces in an ImageSee more Amazon Rekognition ExamplesDetects faces within an image that is provided as input. This example passes theimage as base64-encoded image bytes. For more information, see https://docs.aws.amazon.com/rekognition/latest/dg/API_DetectFaces.html
#include <CkRestW.h> #include <CkAuthAwsW.h> #include <CkBinDataW.h> #include <CkStringBuilderW.h> #include <CkJsonObjectW.h> void ChilkatSample(void) { CkRestW rest; bool success; CkAuthAwsW authAws; authAws.put_AccessKey(L"AWS_ACCESS_KEY"); authAws.put_SecretKey(L"AWS_SECRET_KEY"); // Don't forget to change the region to your particular region. (Also make the same change in the call to Connect below.) authAws.put_Region(L"us-west-2"); authAws.put_ServiceName(L"rekognition"); // SetAuthAws causes Chilkat to automatically add the following headers: Authorization, X-Amz-Date rest.SetAuthAws(authAws); // URL: https://rekognition.us-west-2.amazonaws.com/ bool bTls = true; int port = 443; bool bAutoReconnect = true; // Don't forget to change the region domain (us-west-2.amazonaws.com) to your particular region. success = rest.Connect(L"rekognition.us-west-2.amazonaws.com",port,bTls,bAutoReconnect); if (success != true) { wprintf(L"ConnectFailReason: %d\n",rest.get_ConnectFailReason()); wprintf(L"%s\n",rest.lastErrorText()); return; } // Note: The above code does not need to be repeatedly called for each REST request. // The rest object can be setup once, and then many requests can be sent. Chilkat will automatically // reconnect within a FullRequest* method as needed. It is only the very first connection that is explicitly // made via the Connect method. // Load the JPG to be passed as base64 in the JSON. CkBinDataW bdJpg; success = bdJpg.LoadFile(L"qa_data/jpg/kid_blue_coat.jpg"); if (success != true) { wprintf(L"Failed to load the input JPG file.\n"); return; } // We wish to send the following JSON in the body of our HTTP request: // { // "Image": { // "Bytes": "base64_image_bytes" // } // "Attributes": [ // "ALL" // ] // } // Here is the image we used for testing: // Convert binary image bytes to base64. // Note: We are explicitly keeping the data inside Chilkat to avoid having to pass large strings // as arguments to function calls. This is important for some programming languages. CkStringBuilderW sbJpg; bdJpg.GetEncodedSb(L"base64",sbJpg); CkJsonObjectW json; json.UpdateSb(L"Image.Bytes",sbJpg); json.UpdateString(L"Attributes[0]",L"ALL"); rest.AddHeader(L"Content-Type",L"application/x-amz-json-1.1"); rest.AddHeader(L"X-Amz-Target",L"RekognitionService.DetectFaces"); CkStringBuilderW sbRequestBody; json.EmitSb(sbRequestBody); CkStringBuilderW sbResponseBody; success = rest.FullRequestSb(L"POST",L"/",sbRequestBody,sbResponseBody); if (success != true) { wprintf(L"%s\n",rest.lastErrorText()); return; } int respStatusCode = rest.get_ResponseStatusCode(); wprintf(L"response status code = %d\n",respStatusCode); if (respStatusCode >= 400) { wprintf(L"Response Status Code = %d\n",respStatusCode); wprintf(L"Response Header:\n"); wprintf(L"%s\n",rest.responseHeader()); wprintf(L"Response Body:\n"); wprintf(L"%s\n",sbResponseBody.getAsString()); return; } CkJsonObjectW jResp; jResp.LoadSb(sbResponseBody); jResp.put_EmitCompact(false); wprintf(L"%s\n",jResp.emit()); // Sample JSON response: // (Sample code for parsing the JSON response is shown below) // { // "FaceDetails": [ // { // "AgeRange": { // "High": 18, // "Low": 8 // }, // "Beard": { // "Confidence": 98.06282806396484, // "Value": false // }, // "BoundingBox": { // "Height": 0.327279269695282, // "Left": 0.5339247584342957, // "Top": 0.23660442233085632, // "Width": 0.35611653327941895 // }, // "Confidence": 99.99732971191406, // "Emotions": [ // { // "Confidence": 99.5849380493164, // "Type": "HAPPY" // }, // { // "Confidence": 0.15533843636512756, // "Type": "CALM" // }, // { // "Confidence": 0.08864031732082367, // "Type": "SURPRISED" // }, // { // "Confidence": 0.05476664379239082, // "Type": "SAD" // }, // { // "Confidence": 0.042048510164022446, // "Type": "CONFUSED" // }, // { // "Confidence": 0.038942769169807434, // "Type": "DISGUSTED" // }, // { // "Confidence": 0.021463459357619286, // "Type": "FEAR" // }, // { // "Confidence": 0.013858155347406864, // "Type": "ANGRY" // } // ], // "Eyeglasses": { // "Confidence": 98.5116195678711, // "Value": false // }, // "EyesOpen": { // "Confidence": 99.65477752685547, // "Value": true // }, // "Gender": { // "Confidence": 97.1164321899414, // "Value": "Female" // }, // "Landmarks": [ // { // "Type": "eyeLeft", // "X": 0.6554790735244751, // "Y": 0.35153862833976746 // }, // { // "Type": "eyeRight", // "X": 0.7940073609352112, // "Y": 0.38292214274406433 // }, // { // "Type": "mouthLeft", // "X": 0.6188991069793701, // "Y": 0.46431097388267517 // }, // { // "Type": "mouthRight", // "X": 0.7352844476699829, // "Y": 0.490242063999176 // }, // { // "Type": "nose", // "X": 0.7125006914138794, // "Y": 0.44607019424438477 // }, // { // "Type": "leftEyeBrowLeft", // "X": 0.6096581220626831, // "Y": 0.3071737587451935 // }, // { // "Type": "leftEyeBrowRight", // "X": 0.6628581285476685, // "Y": 0.3133310079574585 // }, // { // "Type": "leftEyeBrowUp", // "X": 0.7027584314346313, // "Y": 0.33200803399086 // }, // { // "Type": "rightEyeBrowLeft", // "X": 0.7813941240310669, // "Y": 0.35023579001426697 // }, // { // "Type": "rightEyeBrowRight", // "X": 0.8213478922843933, // "Y": 0.34993964433670044 // }, // { // "Type": "rightEyeBrowUp", // "X": 0.8495538234710693, // "Y": 0.36189284920692444 // }, // { // "Type": "leftEyeLeft", // "X": 0.629088282585144, // "Y": 0.34286588430404663 // }, // { // "Type": "leftEyeRight", // "X": 0.6820939183235168, // "Y": 0.3586524724960327 // }, // { // "Type": "leftEyeUp", // "X": 0.6580297946929932, // "Y": 0.3468707501888275 // }, // { // "Type": "leftEyeDown", // "X": 0.6537532210350037, // "Y": 0.35663917660713196 // }, // { // "Type": "rightEyeLeft", // "X": 0.7655976414680481, // "Y": 0.3776427209377289 // }, // { // "Type": "rightEyeRight", // "X": 0.8166338801383972, // "Y": 0.38544225692749023 // }, // { // "Type": "rightEyeUp", // "X": 0.7969376444816589, // "Y": 0.37844377756118774 // }, // { // "Type": "rightEyeDown", // "X": 0.7909533977508545, // "Y": 0.3877102732658386 // }, // { // "Type": "noseLeft", // "X": 0.6727234721183777, // "Y": 0.44030481576919556 // }, // { // "Type": "noseRight", // "X": 0.7237889170646667, // "Y": 0.45200300216674805 // }, // { // "Type": "mouthUp", // "X": 0.6882695555686951, // "Y": 0.4740942418575287 // }, // { // "Type": "mouthDown", // "X": 0.6720560789108276, // "Y": 0.5046101808547974 // }, // { // "Type": "leftPupil", // "X": 0.6554790735244751, // "Y": 0.35153862833976746 // }, // { // "Type": "rightPupil", // "X": 0.7940073609352112, // "Y": 0.38292214274406433 // }, // { // "Type": "upperJawlineLeft", // "X": 0.5517005324363708, // "Y": 0.30355724692344666 // }, // { // "Type": "midJawlineLeft", // "X": 0.5320234894752502, // "Y": 0.43352627754211426 // }, // { // "Type": "chinBottom", // "X": 0.6419994831085205, // "Y": 0.5531964302062988 // }, // { // "Type": "midJawlineRight", // "X": 0.7752369046211243, // "Y": 0.48957017064094543 // }, // { // "Type": "upperJawlineRight", // "X": 0.8515444397926331, // "Y": 0.37258899211883545 // } // ], // "MouthOpen": { // "Confidence": 68.26280212402344, // "Value": false // }, // "Mustache": { // "Confidence": 99.73213195800781, // "Value": false // }, // "Pose": { // "Pitch": -11.299633026123047, // "Roll": 17.6924991607666, // "Yaw": 13.582314491271973 // }, // "Quality": { // "Brightness": 83.72581481933594, // "Sharpness": 67.22731018066406 // }, // "Smile": { // "Confidence": 98.4793930053711, // "Value": true // }, // "Sunglasses": { // "Confidence": 99.3582992553711, // "Value": false // } // } // ] // } // Sample code for parsing the JSON response... // Use the following online tool to generate parsing code from sample JSON: // Generate Parsing Code from JSON // Chilkat functions returning "const char *" return a pointer to temporary internal memory owned and managed by Chilkat. // See this example explaining how this memory should be used: const char * functions. int AgeRangeHigh; int AgeRangeLow; const wchar_t *BeardConfidence = 0; bool BeardValue; const wchar_t *BoundingBoxHeight = 0; const wchar_t *BoundingBoxLeft = 0; const wchar_t *BoundingBoxTop = 0; const wchar_t *BoundingBoxWidth = 0; const wchar_t *Confidence = 0; const wchar_t *EyeglassesConfidence = 0; bool EyeglassesValue; const wchar_t *EyesOpenConfidence = 0; bool EyesOpenValue; const wchar_t *GenderConfidence = 0; const wchar_t *GenderValue = 0; const wchar_t *MouthOpenConfidence = 0; bool MouthOpenValue; const wchar_t *MustacheConfidence = 0; bool MustacheValue; const wchar_t *PosePitch = 0; const wchar_t *PoseRoll = 0; const wchar_t *PoseYaw = 0; const wchar_t *QualityBrightness = 0; const wchar_t *QualitySharpness = 0; const wchar_t *SmileConfidence = 0; bool SmileValue; const wchar_t *SunglassesConfidence = 0; bool SunglassesValue; int j; int count_j; const wchar_t *v_Type = 0; const wchar_t *X = 0; const wchar_t *Y = 0; int i = 0; int count_i = jResp.SizeOfArray(L"FaceDetails"); while (i < count_i) { jResp.put_I(i); AgeRangeHigh = jResp.IntOf(L"FaceDetails[i].AgeRange.High"); AgeRangeLow = jResp.IntOf(L"FaceDetails[i].AgeRange.Low"); BeardConfidence = jResp.stringOf(L"FaceDetails[i].Beard.Confidence"); BeardValue = jResp.BoolOf(L"FaceDetails[i].Beard.Value"); BoundingBoxHeight = jResp.stringOf(L"FaceDetails[i].BoundingBox.Height"); BoundingBoxLeft = jResp.stringOf(L"FaceDetails[i].BoundingBox.Left"); BoundingBoxTop = jResp.stringOf(L"FaceDetails[i].BoundingBox.Top"); BoundingBoxWidth = jResp.stringOf(L"FaceDetails[i].BoundingBox.Width"); Confidence = jResp.stringOf(L"FaceDetails[i].Confidence"); EyeglassesConfidence = jResp.stringOf(L"FaceDetails[i].Eyeglasses.Confidence"); EyeglassesValue = jResp.BoolOf(L"FaceDetails[i].Eyeglasses.Value"); EyesOpenConfidence = jResp.stringOf(L"FaceDetails[i].EyesOpen.Confidence"); EyesOpenValue = jResp.BoolOf(L"FaceDetails[i].EyesOpen.Value"); GenderConfidence = jResp.stringOf(L"FaceDetails[i].Gender.Confidence"); GenderValue = jResp.stringOf(L"FaceDetails[i].Gender.Value"); MouthOpenConfidence = jResp.stringOf(L"FaceDetails[i].MouthOpen.Confidence"); MouthOpenValue = jResp.BoolOf(L"FaceDetails[i].MouthOpen.Value"); MustacheConfidence = jResp.stringOf(L"FaceDetails[i].Mustache.Confidence"); MustacheValue = jResp.BoolOf(L"FaceDetails[i].Mustache.Value"); PosePitch = jResp.stringOf(L"FaceDetails[i].Pose.Pitch"); PoseRoll = jResp.stringOf(L"FaceDetails[i].Pose.Roll"); PoseYaw = jResp.stringOf(L"FaceDetails[i].Pose.Yaw"); QualityBrightness = jResp.stringOf(L"FaceDetails[i].Quality.Brightness"); QualitySharpness = jResp.stringOf(L"FaceDetails[i].Quality.Sharpness"); SmileConfidence = jResp.stringOf(L"FaceDetails[i].Smile.Confidence"); SmileValue = jResp.BoolOf(L"FaceDetails[i].Smile.Value"); SunglassesConfidence = jResp.stringOf(L"FaceDetails[i].Sunglasses.Confidence"); SunglassesValue = jResp.BoolOf(L"FaceDetails[i].Sunglasses.Value"); j = 0; count_j = jResp.SizeOfArray(L"FaceDetails[i].Emotions"); while (j < count_j) { jResp.put_J(j); Confidence = jResp.stringOf(L"FaceDetails[i].Emotions[j].Confidence"); v_Type = jResp.stringOf(L"FaceDetails[i].Emotions[j].Type"); j = j + 1; } j = 0; count_j = jResp.SizeOfArray(L"FaceDetails[i].Landmarks"); while (j < count_j) { jResp.put_J(j); v_Type = jResp.stringOf(L"FaceDetails[i].Landmarks[j].Type"); X = jResp.stringOf(L"FaceDetails[i].Landmarks[j].X"); Y = jResp.stringOf(L"FaceDetails[i].Landmarks[j].Y"); j = j + 1; } i = i + 1; } } |
© 2000-2025 Chilkat Software, Inc. All Rights Reserved.