Chilkat HOME .NET Core C# Android™ AutoIt C C# C++ Chilkat2-Python CkPython Classic ASP DataFlex Delphi ActiveX Delphi DLL Go Java Lianja Mono C# Node.js Objective-C PHP ActiveX PHP Extension Perl PowerBuilder PowerShell PureBasic Ruby SQL Server Swift 2 Swift 3,4,5... Tcl Unicode C Unicode C++ VB.NET VBScript Visual Basic 6.0 Visual FoxPro Xojo Plugin
(Swift 3,4,5...) Amazon Rekognition - Detect Faces in an ImageSee more Amazon Rekognition ExamplesDetects faces within an image that is provided as input. This example passes theimage as base64-encoded image bytes. For more information, see https://docs.aws.amazon.com/rekognition/latest/dg/API_DetectFaces.html
func chilkatTest() { let rest = CkoRest()! var success: Bool let authAws = CkoAuthAws()! authAws.accessKey = "AWS_ACCESS_KEY" authAws.secretKey = "AWS_SECRET_KEY" // Don't forget to change the region to your particular region. (Also make the same change in the call to Connect below.) authAws.region = "us-west-2" authAws.serviceName = "rekognition" // SetAuthAws causes Chilkat to automatically add the following headers: Authorization, X-Amz-Date rest.setAuthAws(authAws) // URL: https://rekognition.us-west-2.amazonaws.com/ var bTls: Bool = true var port: Int = 443 var bAutoReconnect: Bool = true // Don't forget to change the region domain (us-west-2.amazonaws.com) to your particular region. success = rest.connect("rekognition.us-west-2.amazonaws.com", port: port, tls: bTls, autoReconnect: bAutoReconnect) if success != true { print("ConnectFailReason: \(rest.connectFailReason.intValue)") print("\(rest.lastErrorText!)") return } // Note: The above code does not need to be repeatedly called for each REST request. // The rest object can be setup once, and then many requests can be sent. Chilkat will automatically // reconnect within a FullRequest* method as needed. It is only the very first connection that is explicitly // made via the Connect method. // Load the JPG to be passed as base64 in the JSON. let bdJpg = CkoBinData()! success = bdJpg.loadFile("qa_data/jpg/kid_blue_coat.jpg") if success != true { print("Failed to load the input JPG file.") return } // We wish to send the following JSON in the body of our HTTP request: // { // "Image": { // "Bytes": "base64_image_bytes" // } // "Attributes": [ // "ALL" // ] // } // Here is the image we used for testing: // Convert binary image bytes to base64. // Note: We are explicitly keeping the data inside Chilkat to avoid having to pass large strings // as arguments to function calls. This is important for some programming languages. let sbJpg = CkoStringBuilder()! bdJpg.getEncodedSb("base64", sb: sbJpg) let json = CkoJsonObject()! json.updateSb("Image.Bytes", sb: sbJpg) json.update("Attributes[0]", value: "ALL") rest.addHeader("Content-Type", value: "application/x-amz-json-1.1") rest.addHeader("X-Amz-Target", value: "RekognitionService.DetectFaces") let sbRequestBody = CkoStringBuilder()! json.emitSb(sbRequestBody) let sbResponseBody = CkoStringBuilder()! success = rest.fullRequestSb("POST", uriPath: "/", requestBody: sbRequestBody, responseBody: sbResponseBody) if success != true { print("\(rest.lastErrorText!)") return } var respStatusCode: Int = rest.responseStatusCode.intValue print("response status code = \(respStatusCode)") if respStatusCode >= 400 { print("Response Status Code = \(respStatusCode)") print("Response Header:") print("\(rest.responseHeader!)") print("Response Body:") print("\(sbResponseBody.getAsString()!)") return } let jResp = CkoJsonObject()! jResp.loadSb(sbResponseBody) jResp.emitCompact = false print("\(jResp.emit()!)") // Sample JSON response: // (Sample code for parsing the JSON response is shown below) // { // "FaceDetails": [ // { // "AgeRange": { // "High": 18, // "Low": 8 // }, // "Beard": { // "Confidence": 98.06282806396484, // "Value": false // }, // "BoundingBox": { // "Height": 0.327279269695282, // "Left": 0.5339247584342957, // "Top": 0.23660442233085632, // "Width": 0.35611653327941895 // }, // "Confidence": 99.99732971191406, // "Emotions": [ // { // "Confidence": 99.5849380493164, // "Type": "HAPPY" // }, // { // "Confidence": 0.15533843636512756, // "Type": "CALM" // }, // { // "Confidence": 0.08864031732082367, // "Type": "SURPRISED" // }, // { // "Confidence": 0.05476664379239082, // "Type": "SAD" // }, // { // "Confidence": 0.042048510164022446, // "Type": "CONFUSED" // }, // { // "Confidence": 0.038942769169807434, // "Type": "DISGUSTED" // }, // { // "Confidence": 0.021463459357619286, // "Type": "FEAR" // }, // { // "Confidence": 0.013858155347406864, // "Type": "ANGRY" // } // ], // "Eyeglasses": { // "Confidence": 98.5116195678711, // "Value": false // }, // "EyesOpen": { // "Confidence": 99.65477752685547, // "Value": true // }, // "Gender": { // "Confidence": 97.1164321899414, // "Value": "Female" // }, // "Landmarks": [ // { // "Type": "eyeLeft", // "X": 0.6554790735244751, // "Y": 0.35153862833976746 // }, // { // "Type": "eyeRight", // "X": 0.7940073609352112, // "Y": 0.38292214274406433 // }, // { // "Type": "mouthLeft", // "X": 0.6188991069793701, // "Y": 0.46431097388267517 // }, // { // "Type": "mouthRight", // "X": 0.7352844476699829, // "Y": 0.490242063999176 // }, // { // "Type": "nose", // "X": 0.7125006914138794, // "Y": 0.44607019424438477 // }, // { // "Type": "leftEyeBrowLeft", // "X": 0.6096581220626831, // "Y": 0.3071737587451935 // }, // { // "Type": "leftEyeBrowRight", // "X": 0.6628581285476685, // "Y": 0.3133310079574585 // }, // { // "Type": "leftEyeBrowUp", // "X": 0.7027584314346313, // "Y": 0.33200803399086 // }, // { // "Type": "rightEyeBrowLeft", // "X": 0.7813941240310669, // "Y": 0.35023579001426697 // }, // { // "Type": "rightEyeBrowRight", // "X": 0.8213478922843933, // "Y": 0.34993964433670044 // }, // { // "Type": "rightEyeBrowUp", // "X": 0.8495538234710693, // "Y": 0.36189284920692444 // }, // { // "Type": "leftEyeLeft", // "X": 0.629088282585144, // "Y": 0.34286588430404663 // }, // { // "Type": "leftEyeRight", // "X": 0.6820939183235168, // "Y": 0.3586524724960327 // }, // { // "Type": "leftEyeUp", // "X": 0.6580297946929932, // "Y": 0.3468707501888275 // }, // { // "Type": "leftEyeDown", // "X": 0.6537532210350037, // "Y": 0.35663917660713196 // }, // { // "Type": "rightEyeLeft", // "X": 0.7655976414680481, // "Y": 0.3776427209377289 // }, // { // "Type": "rightEyeRight", // "X": 0.8166338801383972, // "Y": 0.38544225692749023 // }, // { // "Type": "rightEyeUp", // "X": 0.7969376444816589, // "Y": 0.37844377756118774 // }, // { // "Type": "rightEyeDown", // "X": 0.7909533977508545, // "Y": 0.3877102732658386 // }, // { // "Type": "noseLeft", // "X": 0.6727234721183777, // "Y": 0.44030481576919556 // }, // { // "Type": "noseRight", // "X": 0.7237889170646667, // "Y": 0.45200300216674805 // }, // { // "Type": "mouthUp", // "X": 0.6882695555686951, // "Y": 0.4740942418575287 // }, // { // "Type": "mouthDown", // "X": 0.6720560789108276, // "Y": 0.5046101808547974 // }, // { // "Type": "leftPupil", // "X": 0.6554790735244751, // "Y": 0.35153862833976746 // }, // { // "Type": "rightPupil", // "X": 0.7940073609352112, // "Y": 0.38292214274406433 // }, // { // "Type": "upperJawlineLeft", // "X": 0.5517005324363708, // "Y": 0.30355724692344666 // }, // { // "Type": "midJawlineLeft", // "X": 0.5320234894752502, // "Y": 0.43352627754211426 // }, // { // "Type": "chinBottom", // "X": 0.6419994831085205, // "Y": 0.5531964302062988 // }, // { // "Type": "midJawlineRight", // "X": 0.7752369046211243, // "Y": 0.48957017064094543 // }, // { // "Type": "upperJawlineRight", // "X": 0.8515444397926331, // "Y": 0.37258899211883545 // } // ], // "MouthOpen": { // "Confidence": 68.26280212402344, // "Value": false // }, // "Mustache": { // "Confidence": 99.73213195800781, // "Value": false // }, // "Pose": { // "Pitch": -11.299633026123047, // "Roll": 17.6924991607666, // "Yaw": 13.582314491271973 // }, // "Quality": { // "Brightness": 83.72581481933594, // "Sharpness": 67.22731018066406 // }, // "Smile": { // "Confidence": 98.4793930053711, // "Value": true // }, // "Sunglasses": { // "Confidence": 99.3582992553711, // "Value": false // } // } // ] // } // Sample code for parsing the JSON response... // Use the following online tool to generate parsing code from sample JSON: // Generate Parsing Code from JSON var AgeRangeHigh: Int var AgeRangeLow: Int var BeardConfidence: String? var BeardValue: Bool var BoundingBoxHeight: String? var BoundingBoxLeft: String? var BoundingBoxTop: String? var BoundingBoxWidth: String? var Confidence: String? var EyeglassesConfidence: String? var EyeglassesValue: Bool var EyesOpenConfidence: String? var EyesOpenValue: Bool var GenderConfidence: String? var GenderValue: String? var MouthOpenConfidence: String? var MouthOpenValue: Bool var MustacheConfidence: String? var MustacheValue: Bool var PosePitch: String? var PoseRoll: String? var PoseYaw: String? var QualityBrightness: String? var QualitySharpness: String? var SmileConfidence: String? var SmileValue: Bool var SunglassesConfidence: String? var SunglassesValue: Bool var j: Int var count_j: Int var v_Type: String? var X: String? var Y: String? var i: Int = 0 var count_i: Int = jResp.size(ofArray: "FaceDetails").intValue while i < count_i { jResp.i = i AgeRangeHigh = jResp.int(of: "FaceDetails[i].AgeRange.High").intValue AgeRangeLow = jResp.int(of: "FaceDetails[i].AgeRange.Low").intValue BeardConfidence = jResp.string(of: "FaceDetails[i].Beard.Confidence") BeardValue = jResp.bool(of: "FaceDetails[i].Beard.Value") BoundingBoxHeight = jResp.string(of: "FaceDetails[i].BoundingBox.Height") BoundingBoxLeft = jResp.string(of: "FaceDetails[i].BoundingBox.Left") BoundingBoxTop = jResp.string(of: "FaceDetails[i].BoundingBox.Top") BoundingBoxWidth = jResp.string(of: "FaceDetails[i].BoundingBox.Width") Confidence = jResp.string(of: "FaceDetails[i].Confidence") EyeglassesConfidence = jResp.string(of: "FaceDetails[i].Eyeglasses.Confidence") EyeglassesValue = jResp.bool(of: "FaceDetails[i].Eyeglasses.Value") EyesOpenConfidence = jResp.string(of: "FaceDetails[i].EyesOpen.Confidence") EyesOpenValue = jResp.bool(of: "FaceDetails[i].EyesOpen.Value") GenderConfidence = jResp.string(of: "FaceDetails[i].Gender.Confidence") GenderValue = jResp.string(of: "FaceDetails[i].Gender.Value") MouthOpenConfidence = jResp.string(of: "FaceDetails[i].MouthOpen.Confidence") MouthOpenValue = jResp.bool(of: "FaceDetails[i].MouthOpen.Value") MustacheConfidence = jResp.string(of: "FaceDetails[i].Mustache.Confidence") MustacheValue = jResp.bool(of: "FaceDetails[i].Mustache.Value") PosePitch = jResp.string(of: "FaceDetails[i].Pose.Pitch") PoseRoll = jResp.string(of: "FaceDetails[i].Pose.Roll") PoseYaw = jResp.string(of: "FaceDetails[i].Pose.Yaw") QualityBrightness = jResp.string(of: "FaceDetails[i].Quality.Brightness") QualitySharpness = jResp.string(of: "FaceDetails[i].Quality.Sharpness") SmileConfidence = jResp.string(of: "FaceDetails[i].Smile.Confidence") SmileValue = jResp.bool(of: "FaceDetails[i].Smile.Value") SunglassesConfidence = jResp.string(of: "FaceDetails[i].Sunglasses.Confidence") SunglassesValue = jResp.bool(of: "FaceDetails[i].Sunglasses.Value") j = 0 count_j = jResp.size(ofArray: "FaceDetails[i].Emotions").intValue while j < count_j { jResp.j = j Confidence = jResp.string(of: "FaceDetails[i].Emotions[j].Confidence") v_Type = jResp.string(of: "FaceDetails[i].Emotions[j].Type") j = j + 1 } j = 0 count_j = jResp.size(ofArray: "FaceDetails[i].Landmarks").intValue while j < count_j { jResp.j = j v_Type = jResp.string(of: "FaceDetails[i].Landmarks[j].Type") X = jResp.string(of: "FaceDetails[i].Landmarks[j].X") Y = jResp.string(of: "FaceDetails[i].Landmarks[j].Y") j = j + 1 } i = i + 1 } } |
© 2000-2024 Chilkat Software, Inc. All Rights Reserved.