Chilkat HOME .NET Core C# Android™ AutoIt C C# C++ Chilkat2-Python CkPython Classic ASP DataFlex Delphi ActiveX Delphi DLL Go Java Lianja Mono C# Node.js Objective-C PHP ActiveX PHP Extension Perl PowerBuilder PowerShell PureBasic Ruby SQL Server Swift 2 Swift 3,4,5... Tcl Unicode C Unicode C++ VB.NET VBScript Visual Basic 6.0 Visual FoxPro Xojo Plugin
(PowerBuilder) Amazon Rekognition - Detect Faces in an ImageSee more Amazon Rekognition ExamplesDetects faces within an image that is provided as input. This example passes theimage as base64-encoded image bytes. For more information, see https://docs.aws.amazon.com/rekognition/latest/dg/API_DetectFaces.html
integer li_rc oleobject loo_Rest integer li_Success oleobject loo_AuthAws integer li_BTls integer li_Port integer li_BAutoReconnect oleobject loo_BdJpg oleobject loo_SbJpg oleobject loo_Json oleobject loo_SbRequestBody oleobject loo_SbResponseBody integer li_RespStatusCode oleobject loo_JResp integer li_AgeRangeHigh integer li_AgeRangeLow string ls_BeardConfidence integer li_BeardValue string ls_BoundingBoxHeight string ls_BoundingBoxLeft string ls_BoundingBoxTop string ls_BoundingBoxWidth string ls_Confidence string ls_EyeglassesConfidence integer li_EyeglassesValue string ls_EyesOpenConfidence integer li_EyesOpenValue string ls_GenderConfidence string ls_GenderValue string ls_MouthOpenConfidence integer li_MouthOpenValue string ls_MustacheConfidence integer li_MustacheValue string ls_PosePitch string ls_PoseRoll string ls_PoseYaw string ls_QualityBrightness string ls_QualitySharpness string ls_SmileConfidence integer li_SmileValue string ls_SunglassesConfidence integer li_SunglassesValue integer j integer li_Count_j string ls_V_Type string X string Y integer i integer li_Count_i loo_Rest = create oleobject li_rc = loo_Rest.ConnectToNewObject("Chilkat_9_5_0.Rest") if li_rc < 0 then destroy loo_Rest MessageBox("Error","Connecting to COM object failed") return end if loo_AuthAws = create oleobject li_rc = loo_AuthAws.ConnectToNewObject("Chilkat_9_5_0.AuthAws") loo_AuthAws.AccessKey = "AWS_ACCESS_KEY" loo_AuthAws.SecretKey = "AWS_SECRET_KEY" // Don't forget to change the region to your particular region. (Also make the same change in the call to Connect below.) loo_AuthAws.Region = "us-west-2" loo_AuthAws.ServiceName = "rekognition" // SetAuthAws causes Chilkat to automatically add the following headers: Authorization, X-Amz-Date loo_Rest.SetAuthAws(loo_AuthAws) // URL: https://rekognition.us-west-2.amazonaws.com/ li_BTls = 1 li_Port = 443 li_BAutoReconnect = 1 // Don't forget to change the region domain (us-west-2.amazonaws.com) to your particular region. li_Success = loo_Rest.Connect("rekognition.us-west-2.amazonaws.com",li_Port,li_BTls,li_BAutoReconnect) if li_Success <> 1 then Write-Debug "ConnectFailReason: " + string(loo_Rest.ConnectFailReason) Write-Debug loo_Rest.LastErrorText destroy loo_Rest destroy loo_AuthAws return end if // Note: The above code does not need to be repeatedly called for each REST request. // The rest object can be setup once, and then many requests can be sent. Chilkat will automatically // reconnect within a FullRequest* method as needed. It is only the very first connection that is explicitly // made via the Connect method. // Load the JPG to be passed as base64 in the JSON. loo_BdJpg = create oleobject li_rc = loo_BdJpg.ConnectToNewObject("Chilkat_9_5_0.BinData") li_Success = loo_BdJpg.LoadFile("qa_data/jpg/kid_blue_coat.jpg") if li_Success <> 1 then Write-Debug "Failed to load the input JPG file." destroy loo_Rest destroy loo_AuthAws destroy loo_BdJpg return end if // We wish to send the following JSON in the body of our HTTP request: // { // "Image": { // "Bytes": "base64_image_bytes" // } // "Attributes": [ // "ALL" // ] // } // Here is the image we used for testing: // Convert binary image bytes to base64. // Note: We are explicitly keeping the data inside Chilkat to avoid having to pass large strings // as arguments to function calls. This is important for some programming languages. loo_SbJpg = create oleobject li_rc = loo_SbJpg.ConnectToNewObject("Chilkat_9_5_0.StringBuilder") loo_BdJpg.GetEncodedSb("base64",loo_SbJpg) loo_Json = create oleobject li_rc = loo_Json.ConnectToNewObject("Chilkat_9_5_0.JsonObject") loo_Json.UpdateSb("Image.Bytes",loo_SbJpg) loo_Json.UpdateString("Attributes[0]","ALL") loo_Rest.AddHeader("Content-Type","application/x-amz-json-1.1") loo_Rest.AddHeader("X-Amz-Target","RekognitionService.DetectFaces") loo_SbRequestBody = create oleobject li_rc = loo_SbRequestBody.ConnectToNewObject("Chilkat_9_5_0.StringBuilder") loo_Json.EmitSb(loo_SbRequestBody) loo_SbResponseBody = create oleobject li_rc = loo_SbResponseBody.ConnectToNewObject("Chilkat_9_5_0.StringBuilder") li_Success = loo_Rest.FullRequestSb("POST","/",loo_SbRequestBody,loo_SbResponseBody) if li_Success <> 1 then Write-Debug loo_Rest.LastErrorText destroy loo_Rest destroy loo_AuthAws destroy loo_BdJpg destroy loo_SbJpg destroy loo_Json destroy loo_SbRequestBody destroy loo_SbResponseBody return end if li_RespStatusCode = loo_Rest.ResponseStatusCode Write-Debug "response status code = " + string(li_RespStatusCode) if li_RespStatusCode >= 400 then Write-Debug "Response Status Code = " + string(li_RespStatusCode) Write-Debug "Response Header:" Write-Debug loo_Rest.ResponseHeader Write-Debug "Response Body:" Write-Debug loo_SbResponseBody.GetAsString() destroy loo_Rest destroy loo_AuthAws destroy loo_BdJpg destroy loo_SbJpg destroy loo_Json destroy loo_SbRequestBody destroy loo_SbResponseBody return end if loo_JResp = create oleobject li_rc = loo_JResp.ConnectToNewObject("Chilkat_9_5_0.JsonObject") loo_JResp.LoadSb(loo_SbResponseBody) loo_JResp.EmitCompact = 0 Write-Debug loo_JResp.Emit() // Sample JSON response: // (Sample code for parsing the JSON response is shown below) // { // "FaceDetails": [ // { // "AgeRange": { // "High": 18, // "Low": 8 // }, // "Beard": { // "Confidence": 98.06282806396484, // "Value": false // }, // "BoundingBox": { // "Height": 0.327279269695282, // "Left": 0.5339247584342957, // "Top": 0.23660442233085632, // "Width": 0.35611653327941895 // }, // "Confidence": 99.99732971191406, // "Emotions": [ // { // "Confidence": 99.5849380493164, // "Type": "HAPPY" // }, // { // "Confidence": 0.15533843636512756, // "Type": "CALM" // }, // { // "Confidence": 0.08864031732082367, // "Type": "SURPRISED" // }, // { // "Confidence": 0.05476664379239082, // "Type": "SAD" // }, // { // "Confidence": 0.042048510164022446, // "Type": "CONFUSED" // }, // { // "Confidence": 0.038942769169807434, // "Type": "DISGUSTED" // }, // { // "Confidence": 0.021463459357619286, // "Type": "FEAR" // }, // { // "Confidence": 0.013858155347406864, // "Type": "ANGRY" // } // ], // "Eyeglasses": { // "Confidence": 98.5116195678711, // "Value": false // }, // "EyesOpen": { // "Confidence": 99.65477752685547, // "Value": true // }, // "Gender": { // "Confidence": 97.1164321899414, // "Value": "Female" // }, // "Landmarks": [ // { // "Type": "eyeLeft", // "X": 0.6554790735244751, // "Y": 0.35153862833976746 // }, // { // "Type": "eyeRight", // "X": 0.7940073609352112, // "Y": 0.38292214274406433 // }, // { // "Type": "mouthLeft", // "X": 0.6188991069793701, // "Y": 0.46431097388267517 // }, // { // "Type": "mouthRight", // "X": 0.7352844476699829, // "Y": 0.490242063999176 // }, // { // "Type": "nose", // "X": 0.7125006914138794, // "Y": 0.44607019424438477 // }, // { // "Type": "leftEyeBrowLeft", // "X": 0.6096581220626831, // "Y": 0.3071737587451935 // }, // { // "Type": "leftEyeBrowRight", // "X": 0.6628581285476685, // "Y": 0.3133310079574585 // }, // { // "Type": "leftEyeBrowUp", // "X": 0.7027584314346313, // "Y": 0.33200803399086 // }, // { // "Type": "rightEyeBrowLeft", // "X": 0.7813941240310669, // "Y": 0.35023579001426697 // }, // { // "Type": "rightEyeBrowRight", // "X": 0.8213478922843933, // "Y": 0.34993964433670044 // }, // { // "Type": "rightEyeBrowUp", // "X": 0.8495538234710693, // "Y": 0.36189284920692444 // }, // { // "Type": "leftEyeLeft", // "X": 0.629088282585144, // "Y": 0.34286588430404663 // }, // { // "Type": "leftEyeRight", // "X": 0.6820939183235168, // "Y": 0.3586524724960327 // }, // { // "Type": "leftEyeUp", // "X": 0.6580297946929932, // "Y": 0.3468707501888275 // }, // { // "Type": "leftEyeDown", // "X": 0.6537532210350037, // "Y": 0.35663917660713196 // }, // { // "Type": "rightEyeLeft", // "X": 0.7655976414680481, // "Y": 0.3776427209377289 // }, // { // "Type": "rightEyeRight", // "X": 0.8166338801383972, // "Y": 0.38544225692749023 // }, // { // "Type": "rightEyeUp", // "X": 0.7969376444816589, // "Y": 0.37844377756118774 // }, // { // "Type": "rightEyeDown", // "X": 0.7909533977508545, // "Y": 0.3877102732658386 // }, // { // "Type": "noseLeft", // "X": 0.6727234721183777, // "Y": 0.44030481576919556 // }, // { // "Type": "noseRight", // "X": 0.7237889170646667, // "Y": 0.45200300216674805 // }, // { // "Type": "mouthUp", // "X": 0.6882695555686951, // "Y": 0.4740942418575287 // }, // { // "Type": "mouthDown", // "X": 0.6720560789108276, // "Y": 0.5046101808547974 // }, // { // "Type": "leftPupil", // "X": 0.6554790735244751, // "Y": 0.35153862833976746 // }, // { // "Type": "rightPupil", // "X": 0.7940073609352112, // "Y": 0.38292214274406433 // }, // { // "Type": "upperJawlineLeft", // "X": 0.5517005324363708, // "Y": 0.30355724692344666 // }, // { // "Type": "midJawlineLeft", // "X": 0.5320234894752502, // "Y": 0.43352627754211426 // }, // { // "Type": "chinBottom", // "X": 0.6419994831085205, // "Y": 0.5531964302062988 // }, // { // "Type": "midJawlineRight", // "X": 0.7752369046211243, // "Y": 0.48957017064094543 // }, // { // "Type": "upperJawlineRight", // "X": 0.8515444397926331, // "Y": 0.37258899211883545 // } // ], // "MouthOpen": { // "Confidence": 68.26280212402344, // "Value": false // }, // "Mustache": { // "Confidence": 99.73213195800781, // "Value": false // }, // "Pose": { // "Pitch": -11.299633026123047, // "Roll": 17.6924991607666, // "Yaw": 13.582314491271973 // }, // "Quality": { // "Brightness": 83.72581481933594, // "Sharpness": 67.22731018066406 // }, // "Smile": { // "Confidence": 98.4793930053711, // "Value": true // }, // "Sunglasses": { // "Confidence": 99.3582992553711, // "Value": false // } // } // ] // } // Sample code for parsing the JSON response... // Use the following online tool to generate parsing code from sample JSON: // Generate Parsing Code from JSON i = 0 li_Count_i = loo_JResp.SizeOfArray("FaceDetails") do while i < li_Count_i loo_JResp.I = i li_AgeRangeHigh = loo_JResp.IntOf("FaceDetails[i].AgeRange.High") li_AgeRangeLow = loo_JResp.IntOf("FaceDetails[i].AgeRange.Low") ls_BeardConfidence = loo_JResp.StringOf("FaceDetails[i].Beard.Confidence") li_BeardValue = loo_JResp.BoolOf("FaceDetails[i].Beard.Value") ls_BoundingBoxHeight = loo_JResp.StringOf("FaceDetails[i].BoundingBox.Height") ls_BoundingBoxLeft = loo_JResp.StringOf("FaceDetails[i].BoundingBox.Left") ls_BoundingBoxTop = loo_JResp.StringOf("FaceDetails[i].BoundingBox.Top") ls_BoundingBoxWidth = loo_JResp.StringOf("FaceDetails[i].BoundingBox.Width") ls_Confidence = loo_JResp.StringOf("FaceDetails[i].Confidence") ls_EyeglassesConfidence = loo_JResp.StringOf("FaceDetails[i].Eyeglasses.Confidence") li_EyeglassesValue = loo_JResp.BoolOf("FaceDetails[i].Eyeglasses.Value") ls_EyesOpenConfidence = loo_JResp.StringOf("FaceDetails[i].EyesOpen.Confidence") li_EyesOpenValue = loo_JResp.BoolOf("FaceDetails[i].EyesOpen.Value") ls_GenderConfidence = loo_JResp.StringOf("FaceDetails[i].Gender.Confidence") ls_GenderValue = loo_JResp.StringOf("FaceDetails[i].Gender.Value") ls_MouthOpenConfidence = loo_JResp.StringOf("FaceDetails[i].MouthOpen.Confidence") li_MouthOpenValue = loo_JResp.BoolOf("FaceDetails[i].MouthOpen.Value") ls_MustacheConfidence = loo_JResp.StringOf("FaceDetails[i].Mustache.Confidence") li_MustacheValue = loo_JResp.BoolOf("FaceDetails[i].Mustache.Value") ls_PosePitch = loo_JResp.StringOf("FaceDetails[i].Pose.Pitch") ls_PoseRoll = loo_JResp.StringOf("FaceDetails[i].Pose.Roll") ls_PoseYaw = loo_JResp.StringOf("FaceDetails[i].Pose.Yaw") ls_QualityBrightness = loo_JResp.StringOf("FaceDetails[i].Quality.Brightness") ls_QualitySharpness = loo_JResp.StringOf("FaceDetails[i].Quality.Sharpness") ls_SmileConfidence = loo_JResp.StringOf("FaceDetails[i].Smile.Confidence") li_SmileValue = loo_JResp.BoolOf("FaceDetails[i].Smile.Value") ls_SunglassesConfidence = loo_JResp.StringOf("FaceDetails[i].Sunglasses.Confidence") li_SunglassesValue = loo_JResp.BoolOf("FaceDetails[i].Sunglasses.Value") j = 0 li_Count_j = loo_JResp.SizeOfArray("FaceDetails[i].Emotions") do while j < li_Count_j loo_JResp.J = j ls_Confidence = loo_JResp.StringOf("FaceDetails[i].Emotions[j].Confidence") ls_V_Type = loo_JResp.StringOf("FaceDetails[i].Emotions[j].Type") j = j + 1 loop j = 0 li_Count_j = loo_JResp.SizeOfArray("FaceDetails[i].Landmarks") do while j < li_Count_j loo_JResp.J = j ls_V_Type = loo_JResp.StringOf("FaceDetails[i].Landmarks[j].Type") X = loo_JResp.StringOf("FaceDetails[i].Landmarks[j].X") Y = loo_JResp.StringOf("FaceDetails[i].Landmarks[j].Y") j = j + 1 loop i = i + 1 loop destroy loo_Rest destroy loo_AuthAws destroy loo_BdJpg destroy loo_SbJpg destroy loo_Json destroy loo_SbRequestBody destroy loo_SbResponseBody destroy loo_JResp |
© 2000-2024 Chilkat Software, Inc. All Rights Reserved.