Chilkat Examples

ChilkatHOMEAndroid™Classic ASPCC++C#Mono C#.NET Core C#C# UWP/WinRTDataFlexDelphi ActiveXDelphi DLLVisual FoxProJavaLianjaMFCObjective-CPerlPHP ActiveXPHP ExtensionPowerBuilderPowerShellPureBasicCkPythonChilkat2-PythonRubySQL ServerSwift 2Swift 3,4,5...TclUnicode CUnicode C++Visual Basic 6.0VB.NETVB.NET UWP/WinRTVBScriptXojo PluginNode.jsExcelGo

Excel Examples

Web API Categories

ASN.1
Amazon EC2
Amazon Glacier
Amazon S3
Amazon S3 (new)
Amazon SES
Amazon SNS
Amazon SQS
Azure Cloud Storage
Azure Service Bus
Azure Table Service
Base64
Bounced Email
Box
CAdES
CSR
CSV
Certificates
Compression
DKIM / DomainKey
DSA
Diffie-Hellman
Digital Signatures
Dropbox
Dynamics CRM
EBICS
ECC
Ed25519
Email Object
Encryption
FTP
FileAccess
Firebase
GMail REST API
GMail SMTP/IMAP/POP
Geolocation
Google APIs
Google Calendar
Google Cloud SQL
Google Cloud Storage
Google Drive
Google Photos
Google Sheets
Google Tasks
Gzip
HTML-to-XML/Text
HTTP

HTTP Misc
IMAP
JSON
JSON Web Encryption (JWE)
JSON Web Signatures (JWS)
JSON Web Token (JWT)
Java KeyStore (JKS)
MHT / HTML Email
MIME
MS Storage Providers
Microsoft Graph
NTLM
OAuth1
OAuth2
OIDC
Office365
OneDrive
OpenSSL
Outlook
Outlook Calendar
Outlook Contact
PDF Signatures
PEM
PFX/P12
PKCS11
POP3
PRNG
REST
REST Misc
RSA
SCP
SCard
SFTP
SMTP
SSH
SSH Key
SSH Tunnel
ScMinidriver
SharePoint
Socket/SSL/TLS
Spider
Stream
Tar Archive
Upload
WebSocket
XAdES
XML
XML Digital Signatures
XMP
Zip
curl

 

 

 

(Excel) Tips on Matching Encryption with another System

This example provides tips on matching encryption results produced by another system.

Download Excel Class Modules

Chilkat Excel Class Modules

' This example assumes the Chilkat API to have been previously unlocked.
' See Global Unlock Sample for sample code.

Dim crypt As Chilkat.Crypt2
Set crypt = Chilkat.NewCrypt2

' Let's examine 256-bit AES encryption in CBC mode.
' CBC mode is Cipher Block Chaining, and it uses an IV (initialization vector)
crypt.CryptAlgorithm = "aes"
crypt.CipherMode = "cbc"
crypt.KeyLength = 256
crypt.PaddingScheme = 0

ivHex1 = "000102030405060708090A0B0C0D0E0F"

ivHex2 = "FF0102030405060708090A0B0C0D0E0F"
crypt.SetEncodedIV ivHex1,"hex"

keyHex = "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F"
crypt.SetEncodedKey keyHex,"hex"

' Matching encryption requires all of the above settings to be matched exactly.
' Let's get our output in hex format so we can easily see the values of the encrypted bytes.
crypt.EncodingMode = "hex"

' Encrypt something small:
Debug.Print crypt.EncryptStringENC("Hello")
' The result is 5B827AB3B4F9F2292C2B74C8A6C99A3D
' This 16 bytes -- exactly one AES encryption block.

' Let's change only the padding scheme.
crypt.PaddingScheme = 3

' Encrypt again:
Debug.Print crypt.EncryptStringENC("Hello")
' The result is entirely different: 469C28CC576069F807891FEE2DE76D68

' The padding scheme only affects the very last block of output.  Therefore,
' if all settings match except for the padding scheme, we're unable to
' know if we encrypt a very small amount of data. However, if we encrypt
' a larger amount of data, the single difference becomes apparent:
Debug.Print "-- Only the padding scheme differs --"
crypt.PaddingScheme = 0
Debug.Print crypt.EncryptStringENC("HelloHelloHelloHelloHelloHelloHello")
crypt.PaddingScheme = 3
Debug.Print crypt.EncryptStringENC("HelloHelloHelloHelloHelloHelloHello")

' Now examine the outputs:
' F6A201F8E0B6595FA20E4A212A2AD9A5046DAF29E8B35AD15CEE56A1A69F2A3A7B347A7C15E26E7A6760533C7A8E0D44
' F6A201F8E0B6595FA20E4A212A2AD9A5046DAF29E8B35AD15CEE56A1A69F2A3A292CA61D03A85E1AC39B50D4DA71691E
' We can see the output matches except for the last block, which is affected by the padding scheme.

' If we are able to easily use ECB mode w/ the other system
' we are trying to match, then eliminate the IV from the picture.
' If the encryption matches in ECB mode, but not in CBC mode,
' then we know all correct except for the IV.
' For example, you can see how the IV changes everything with CBC mode,
' but it's not used in ECB mode:
crypt.PaddingScheme = 0
crypt.CipherMode = "cbc"
Debug.Print "-- Only the IV differs, CBC mode produces different output. --"
crypt.SetEncodedIV ivHex1,"hex"
Debug.Print crypt.EncryptStringENC("HelloHelloHelloHelloHelloHelloHello")
crypt.SetEncodedIV ivHex2,"hex"
Debug.Print crypt.EncryptStringENC("HelloHelloHelloHelloHelloHelloHello")

crypt.CipherMode = "ecb"
Debug.Print "-- Only the IV differs, ECB does not use the IV.  The outputs are the same. --"
crypt.SetEncodedIV ivHex1,"hex"
Debug.Print crypt.EncryptStringENC("HelloHelloHelloHelloHelloHelloHello")
crypt.SetEncodedIV ivHex2,"hex"
Debug.Print crypt.EncryptStringENC("HelloHelloHelloHelloHelloHelloHello")

' If we can eliminate the padding scheme and IV from the degrees of freedom,
' then the only remaining likely differences are (1) the secret key,
' and (2) the input data itself.

' The secret key is composed of binary bytes of exactly KeyLength bits.
' For 256-bit AES encrytion, the key length is 256, and therefore the 
' secret key is exactly 32 bytes.  (32 * 8 bits/byte = 256 bits)
' If the secret key is derived from an arbitrary password string, then one must
' exactly duplicate the derivation scheme (such as PBKDF2, for example)
' The input bytes to the derivation scheme must also match.  For example,
' is it the utf-8 byte representation of the password string that is used
' as the starting point for the derivation, or perhaps utf-16, or ANSI (1 byte per char)?

' Likewise, if the data being encrypted is a string, what byte representation of
' the string is being encrypted?  If the bytes presented to the encryptor are different,
' then the output is different.

 

© 2000-2022 Chilkat Software, Inc. All Rights Reserved.