Chilkat HOME .NET Core C# Android™ AutoIt C C# C++ Chilkat2-Python CkPython Classic ASP DataFlex Delphi ActiveX Delphi DLL Go Java Lianja Mono C# Node.js Objective-C PHP ActiveX PHP Extension Perl PowerBuilder PowerShell PureBasic Ruby SQL Server Swift 2 Swift 3,4,5... Tcl Unicode C Unicode C++ VB.NET VBScript Visual Basic 6.0 Visual FoxPro Xojo Plugin
(Delphi ActiveX) Diffie-Hellman Key Exchange (DH)Diffie-Hellman key exchange (DH) is a cryptographic protocol that allows two parties that have no prior knowledge of each other to jointly establish a shared secret key. This example demonstrates how two parties (Alice and Bob) can compute an N-bit shared secret key without the key ever being transmitted.
uses Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants, System.Classes, Vcl.Graphics, Vcl.Controls, Vcl.Forms, Vcl.Dialogs, Vcl.StdCtrls, Chilkat_TLB; ... procedure TForm1.Button1Click(Sender: TObject); var dhBob: TChilkatDh; dhAlice: TChilkatDh; p: WideString; g: Integer; success: Integer; eBob: WideString; eAlice: WideString; kBob: WideString; kAlice: WideString; crypt: TChilkatCrypt2; sessionKey: WideString; iv: WideString; cipherText64: WideString; plainText: WideString; begin // This example requires the Chilkat API to have been previously unlocked. // See Global Unlock Sample for sample code. // Create two separate instances of the DH object. dhBob := TChilkatDh.Create(Self); dhAlice := TChilkatDh.Create(Self); // The DH algorithm begins with a large prime, P, and a generator, G. // These don't have to be secret, and they may be transmitted over an insecure channel. // The generator is a small integer and typically has the value 2 or 5. // The Chilkat DH component provides the ability to use known // "safe" primes, as well as a method to generate new safe primes. // This example will use a known safe prime. Generating // new safe primes is a time-consuming CPU intensive task // and is normally done offline. // Bob will choose to use the 2nd of our 8 pre-chosen safe primes. // It is the Prime for the 2nd Oakley Group (RFC 2409) -- // 1024-bit MODP Group. Generator is 2. // The prime is: 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 } dhBob.UseKnownPrime(2); // The computed shared secret will be equal to the size of the prime (in bits). // In this case the prime is 1024 bits, so the shared secret will be 128 bytes (128 * 8 = 1024). // However, the result is returned as an SSH1-encoded bignum in hex string format. // The SSH1-encoding prepends a 2-byte count, so the result is going to be 2 bytes // longer: 130 bytes. This results in a hex string that is 260 characters long (two chars // per byte for the hex encoding). // Bob will now send P and G to Alice. p := dhBob.P; g := dhBob.G; // Alice calls SetPG to set P and G. SetPG checks // the values to make sure it's a safe prime and will // return 0 if not. success := dhAlice.SetPG(p,g); if (success <> 1) then begin Memo1.Lines.Add('P is not a safe prime'); Exit; end; // Each side begins by generating an "E" // value. The CreateE method has one argument: numBits. // It should be set to twice the size of the number of bits // in the session key. // Let's say we want to generate a 128-bit session key // for AES encryption. The shared secret generated by the Diffie-Hellman // algorithm will be longer, so we'll hash the result to arrive at the // desired session key length. However, the length of the session // key we'll utlimately produce determines the value that should be // passed to the CreateE method. // In this case, we'll be creating a 128-bit session key, so pass 256 to CreateE. // This setting is for security purposes only -- the value // passed to CreateE does not change the length of the shared secret // that is produced by Diffie-Hellman. // Also, there is no need to pass in a value larger // than 2 times the expected session key length. It suffices to // pass exactly 2 times the session key length. // Bob generates a random E (which has the mathematical // properties required for DH). eBob := dhBob.CreateE(256); // Alice does the same: eAlice := dhAlice.CreateE(256); // The "E" values are sent over the insecure channel. // Bob sends his "E" to Alice, and Alice sends her "E" to Bob. // Each side computes the shared secret by calling FindK. // "K" is the shared-secret. // Bob computes the shared secret from Alice's "E": kBob := dhBob.FindK(eAlice); // Alice computes the shared secret from Bob's "E": kAlice := dhAlice.FindK(eBob); // Amazingly, kBob and kAlice are identical and the expected // length (260 characters). The strings contain the hex encoded bytes of // our shared secret: Memo1.Lines.Add('Bob''s shared secret:'); Memo1.Lines.Add(kBob); Memo1.Lines.Add('Alice''s shared secret (should be equal to Bob''s)'); Memo1.Lines.Add(kAlice); // To arrive at a 128-bit session key for AES encryption, Bob and Alice should // both transform the raw shared secret using a hash algorithm that produces // the size of session key desired. MD5 produces a 16-byte (128-bit) result, so // this is a good choice for 128-bit AES. // To produce the session key: crypt := TChilkatCrypt2.Create(Self); crypt.EncodingMode := 'hex'; crypt.HashAlgorithm := 'md5'; sessionKey := crypt.HashStringENC(kBob); Memo1.Lines.Add('128-bit Session Key:'); Memo1.Lines.Add(sessionKey); // Encrypt something... crypt.CryptAlgorithm := 'aes'; crypt.KeyLength := 128; crypt.CipherMode := 'cbc'; // Use an IV that is the MD5 hash of the session key... iv := crypt.HashStringENC(sessionKey); // AES uses a 16-byte IV: Memo1.Lines.Add('Initialization Vector:'); Memo1.Lines.Add(iv); crypt.SetEncodedKey(sessionKey,'hex'); crypt.SetEncodedIV(iv,'hex'); // Encrypt some text: crypt.EncodingMode := 'base64'; cipherText64 := crypt.EncryptStringENC('The quick brown fox jumps over the lazy dog'); Memo1.Lines.Add(cipherText64); plainText := crypt.DecryptStringENC(cipherText64); Memo1.Lines.Add(plainText); end; |
© 2000-2024 Chilkat Software, Inc. All Rights Reserved.