Chilkat HOME .NET Core C# Android™ AutoIt C C# C++ Chilkat2-Python CkPython Classic ASP DataFlex Delphi ActiveX Delphi DLL Go Java Lianja Mono C# Node.js Objective-C PHP ActiveX PHP Extension Perl PowerBuilder PowerShell PureBasic Ruby SQL Server Swift 2 Swift 3,4,5... Tcl Unicode C Unicode C++ VB.NET VBScript Visual Basic 6.0 Visual FoxPro Xojo Plugin
(Chilkat2-Python) Amazon Rekognition - Detect Text in an ImageSee more Amazon Rekognition ExamplesDetects text in the input image and converts it into machine-readable text. This example passes theimage as base64-encoded image bytes. For more information, see https://docs.aws.amazon.com/rekognition/latest/dg/API_DetectText.html
import sys import chilkat2 rest = chilkat2.Rest() authAws = chilkat2.AuthAws() authAws.AccessKey = "AWS_ACCESS_KEY" authAws.SecretKey = "AWS_SECRET_KEY" # Don't forget to change the region to your particular region. (Also make the same change in the call to Connect below.) authAws.Region = "us-west-2" authAws.ServiceName = "rekognition" # SetAuthAws causes Chilkat to automatically add the following headers: Authorization, X-Amz-Date rest.SetAuthAws(authAws) # URL: https://rekognition.us-west-2.amazonaws.com/ bTls = True port = 443 bAutoReconnect = True # Don't forget to change the region domain (us-west-2.amazonaws.com) to your particular region. success = rest.Connect("rekognition.us-west-2.amazonaws.com",port,bTls,bAutoReconnect) if (success != True): print("ConnectFailReason: " + str(rest.ConnectFailReason)) print(rest.LastErrorText) sys.exit() # Note: The above code does not need to be repeatedly called for each REST request. # The rest object can be setup once, and then many requests can be sent. Chilkat will automatically # reconnect within a FullRequest* method as needed. It is only the very first connection that is explicitly # made via the Connect method. # Load the JPG to be passed as base64 in the JSON. bdJpg = chilkat2.BinData() success = bdJpg.LoadFile("qa_data/jpg/monday_keep_smiling.jpg") if (success != True): print("Failed to load the input JPG file.") sys.exit() # We wish to send the following JSON in the body of our HTTP request: # { # "Image": { # "Bytes": "base64_image_bytes" # } # } # Here is the image we used for testing: # Convert binary image bytes to base64. # Note: We are explicitly keeping the data inside Chilkat to avoid having to pass large strings # as arguments to function calls. This is important for some programming languages. sbJpg = chilkat2.StringBuilder() bdJpg.GetEncodedSb("base64",sbJpg) json = chilkat2.JsonObject() json.UpdateSb("Image.Bytes",sbJpg) rest.AddHeader("Content-Type","application/x-amz-json-1.1") rest.AddHeader("X-Amz-Target","RekognitionService.DetectText") sbRequestBody = chilkat2.StringBuilder() json.EmitSb(sbRequestBody) sbResponseBody = chilkat2.StringBuilder() success = rest.FullRequestSb("POST","/",sbRequestBody,sbResponseBody) if (success != True): print(rest.LastErrorText) sys.exit() respStatusCode = rest.ResponseStatusCode print("response status code = " + str(respStatusCode)) if (respStatusCode >= 400): print("Response Status Code = " + str(respStatusCode)) print("Response Header:") print(rest.ResponseHeader) print("Response Body:") print(sbResponseBody.GetAsString()) sys.exit() jResp = chilkat2.JsonObject() jResp.LoadSb(sbResponseBody) jResp.EmitCompact = False print(jResp.Emit()) # Sample JSON response: # (Sample code for parsing the JSON response is shown below) # { # "TextDetections": [ # { # "Confidence": 95.99308776855469, # "DetectedText": "( MONDAY IT'S", # "Geometry": { # "BoundingBox": { # "Height": 0.6399821043014526, # "Left": 0.219133198261261, # "Top": 0.08677978068590164, # "Width": 0.7433173656463623 # }, # "Polygon": [ # { # "X": 0.219133198261261, # "Y": 0.3588336706161499 # }, # { # "X": 0.8984103798866272, # "Y": 0.08677978068590164 # }, # { # "X": 0.9624505639076233, # "Y": 0.4547080099582672 # }, # { # "X": 0.2831733524799347, # "Y": 0.7267619371414185 # } # ] # }, # "Id": 0, # "Type": "LINE" # }, # { # "Confidence": 99.70352172851562, # "DetectedText": "but keep", # "Geometry": { # "BoundingBox": { # "Height": 0.09703556448221207, # "Left": 0.6335319876670837, # "Top": 0.5153074264526367, # "Width": 0.21070890128612518 # }, # "Polygon": [ # { # "X": 0.6355597376823425, # "Y": 0.5153074264526367 # }, # { # "X": 0.8442409038543701, # "Y": 0.5266726613044739 # }, # { # "X": 0.8422132134437561, # "Y": 0.6123430132865906 # }, # { # "X": 0.6335319876670837, # "Y": 0.6009777784347534 # } # ] # }, # "Id": 1, # "Type": "LINE" # }, # { # "Confidence": 99.92333984375, # "DetectedText": "Smiling", # "Geometry": { # "BoundingBox": { # "Height": 0.31578224897384644, # "Left": 0.5070608258247375, # "Top": 0.6086956262588501, # "Width": 0.4795433282852173 # }, # "Polygon": [ # { # "X": 0.5070608258247375, # "Y": 0.6298336386680603 # }, # { # "X": 0.9808917045593262, # "Y": 0.6086956262588501 # }, # { # "X": 0.9866041541099548, # "Y": 0.9033399224281311 # }, # { # "X": 0.5127732157707214, # "Y": 0.9244779348373413 # } # ] # }, # "Id": 2, # "Type": "LINE" # }, # { # "Confidence": 99.77294158935547, # "DetectedText": "IT'S", # "Geometry": { # "BoundingBox": { # "Height": 0.09903381764888763, # "Left": 0.668789803981781, # "Top": 0.17874395847320557, # "Width": 0.1449044644832611 # }, # "Polygon": [ # { # "X": 0.668789803981781, # "Y": 0.17874395847320557 # }, # { # "X": 0.8136942386627197, # "Y": 0.17874395847320557 # }, # { # "X": 0.8136942386627197, # "Y": 0.2777777910232544 # }, # { # "X": 0.668789803981781, # "Y": 0.2777777910232544 # } # ] # }, # "Id": 5, # "ParentId": 0, # "Type": "WORD" # }, # { # "Confidence": 98.44307708740234, # "DetectedText": "MONDAY", # "Geometry": { # "BoundingBox": { # "Height": 0.11112251877784729, # "Left": 0.5541401505470276, # "Top": 0.3526569902896881, # "Width": 0.39013487100601196 # }, # "Polygon": [ # { # "X": 0.5541401505470276, # "Y": 0.3526569902896881 # }, # { # "X": 0.9442675113677979, # "Y": 0.3502415418624878 # }, # { # "X": 0.9458598494529724, # "Y": 0.4613526463508606 # }, # { # "X": 0.5541401505470276, # "Y": 0.4637681245803833 # } # ] # }, # "Id": 4, # "ParentId": 0, # "Type": "WORD" # }, # { # "Confidence": 99.61898803710938, # "DetectedText": "but", # "Geometry": { # "BoundingBox": { # "Height": 0.06521739065647125, # "Left": 0.6353503465652466, # "Top": 0.5241546034812927, # "Width": 0.0843949019908905 # }, # "Polygon": [ # { # "X": 0.6353503465652466, # "Y": 0.5241546034812927 # }, # { # "X": 0.7197452187538147, # "Y": 0.5241546034812927 # }, # { # "X": 0.7197452187538147, # "Y": 0.5893719792366028 # }, # { # "X": 0.6353503465652466, # "Y": 0.5893719792366028 # } # ] # }, # "Id": 6, # "ParentId": 1, # "Type": "WORD" # }, # { # "Confidence": 99.78804779052734, # "DetectedText": "keep", # "Geometry": { # "BoundingBox": { # "Height": 0.07971014827489853, # "Left": 0.7308917045593262, # "Top": 0.5265700221061707, # "Width": 0.1114649698138237 # }, # "Polygon": [ # { # "X": 0.7308917045593262, # "Y": 0.5265700221061707 # }, # { # "X": 0.8423566818237305, # "Y": 0.5265700221061707 # }, # { # "X": 0.8423566818237305, # "Y": 0.6062802076339722 # }, # { # "X": 0.7308917045593262, # "Y": 0.6062802076339722 # } # ] # }, # "Id": 7, # "ParentId": 1, # "Type": "WORD" # }, # { # "Confidence": 89.76324462890625, # "DetectedText": "(", # "Geometry": { # "BoundingBox": { # "Height": 0.16401274502277374, # "Left": 0.27229300141334534, # "Top": 0.6642512083053589, # "Width": 0.2850286066532135 # }, # "Polygon": [ # { # "X": 0.27229300141334534, # "Y": 0.6642512083053589 # }, # { # "X": 0.2707006335258484, # "Y": 0.37922704219818115 # }, # { # "X": 0.43471336364746094, # "Y": 0.37922704219818115 # }, # { # "X": 0.4363057315349579, # "Y": 0.6642512083053589 # } # ] # }, # "Id": 3, # "ParentId": 0, # "Type": "WORD" # }, # { # "Confidence": 99.92333984375, # "DetectedText": "Smiling", # "Geometry": { # "BoundingBox": { # "Height": 0.294724702835083, # "Left": 0.5079618096351624, # "Top": 0.6304348111152649, # "Width": 0.4734293222427368 # }, # "Polygon": [ # { # "X": 0.5079618096351624, # "Y": 0.6304348111152649 # }, # { # "X": 0.9808917045593262, # "Y": 0.6086956262588501 # }, # { # "X": 0.9856687784194946, # "Y": 0.9033816456794739 # }, # { # "X": 0.512738823890686, # "Y": 0.9227052927017212 # } # ] # }, # "Id": 8, # "ParentId": 2, # "Type": "WORD" # } # ], # "TextModelVersion": "3.0" # } # # # Sample code for parsing the JSON response... # Use the following online tool to generate parsing code from sample JSON: # Generate Parsing Code from JSON TextModelVersion = jResp.StringOf("TextModelVersion") i = 0 count_i = jResp.SizeOfArray("TextDetections") while i < count_i : jResp.I = i Confidence = jResp.StringOf("TextDetections[i].Confidence") DetectedText = jResp.StringOf("TextDetections[i].DetectedText") GeometryBoundingBoxHeight = jResp.StringOf("TextDetections[i].Geometry.BoundingBox.Height") GeometryBoundingBoxLeft = jResp.StringOf("TextDetections[i].Geometry.BoundingBox.Left") GeometryBoundingBoxTop = jResp.StringOf("TextDetections[i].Geometry.BoundingBox.Top") GeometryBoundingBoxWidth = jResp.StringOf("TextDetections[i].Geometry.BoundingBox.Width") Id = jResp.IntOf("TextDetections[i].Id") v_Type = jResp.StringOf("TextDetections[i].Type") ParentId = jResp.IntOf("TextDetections[i].ParentId") j = 0 count_j = jResp.SizeOfArray("TextDetections[i].Geometry.Polygon") while j < count_j : jResp.J = j X = jResp.StringOf("TextDetections[i].Geometry.Polygon[j].X") Y = jResp.StringOf("TextDetections[i].Geometry.Polygon[j].Y") j = j + 1 i = i + 1 |
© 2000-2024 Chilkat Software, Inc. All Rights Reserved.