|  | (Chilkat2-Python) Amazon Rekognition - Detect Faces in an ImageDetects faces within an image that is provided as input. This example passes theimage as base64-encoded image bytes.For more information, see https://docs.aws.amazon.com/rekognition/latest/dg/API_DetectFaces.html 
 import sys
import chilkat2
rest = chilkat2.Rest()
authAws = chilkat2.AuthAws()
authAws.AccessKey = "AWS_ACCESS_KEY"
authAws.SecretKey = "AWS_SECRET_KEY"
# Don't forget to change the region to your particular region. (Also make the same change in the call to Connect below.)
authAws.Region = "us-west-2"
authAws.ServiceName = "rekognition"
# SetAuthAws causes Chilkat to automatically add the following headers: Authorization, X-Amz-Date
rest.SetAuthAws(authAws)
# URL: https://rekognition.us-west-2.amazonaws.com/
bTls = True
port = 443
bAutoReconnect = True
# Don't forget to change the region domain (us-west-2.amazonaws.com) to your particular region.
success = rest.Connect("rekognition.us-west-2.amazonaws.com",port,bTls,bAutoReconnect)
if (success != True):
    print("ConnectFailReason: " + str(rest.ConnectFailReason))
    print(rest.LastErrorText)
    sys.exit()
# Note: The above code does not need to be repeatedly called for each REST request.
# The rest object can be setup once, and then many requests can be sent.  Chilkat will automatically
# reconnect within a FullRequest* method as needed.  It is only the very first connection that is explicitly
# made via the Connect method.
# Load the JPG to be passed as base64 in the JSON.
bdJpg = chilkat2.BinData()
success = bdJpg.LoadFile("qa_data/jpg/kid_blue_coat.jpg")
if (success != True):
    print("Failed to load the input JPG file.")
    sys.exit()
# We wish to send the following JSON in the body of our HTTP request:
# {
#     "Image": {
#         "Bytes": "base64_image_bytes"
#     }
#     "Attributes": [
#         "ALL"
#     ]
# }
# Here is the image we used for testing:
 # Convert binary image bytes to base64.
# Note: We are explicitly keeping the data inside Chilkat to avoid having to pass large strings
# as arguments to function calls.  This is important for some programming languages.
sbJpg = chilkat2.StringBuilder()
bdJpg.GetEncodedSb("base64",sbJpg)
json = chilkat2.JsonObject()
json.UpdateSb("Image.Bytes",sbJpg)
json.UpdateString("Attributes[0]","ALL")
rest.AddHeader("Content-Type","application/x-amz-json-1.1")
rest.AddHeader("X-Amz-Target","RekognitionService.DetectFaces")
sbRequestBody = chilkat2.StringBuilder()
json.EmitSb(sbRequestBody)
sbResponseBody = chilkat2.StringBuilder()
success = rest.FullRequestSb("POST","/",sbRequestBody,sbResponseBody)
if (success != True):
    print(rest.LastErrorText)
    sys.exit()
respStatusCode = rest.ResponseStatusCode
print("response status code = " + str(respStatusCode))
if (respStatusCode >= 400):
    print("Response Status Code = " + str(respStatusCode))
    print("Response Header:")
    print(rest.ResponseHeader)
    print("Response Body:")
    print(sbResponseBody.GetAsString())
    sys.exit()
jResp = chilkat2.JsonObject()
jResp.LoadSb(sbResponseBody)
jResp.EmitCompact = False
print(jResp.Emit())
# Sample JSON response:
# (Sample code for parsing the JSON response is shown below)
# {
#   "FaceDetails": [
#     {
#       "AgeRange": {
#         "High": 18,
#         "Low": 8
#       },
#       "Beard": {
#         "Confidence": 98.06282806396484,
#         "Value": false
#       },
#       "BoundingBox": {
#         "Height": 0.327279269695282,
#         "Left": 0.5339247584342957,
#         "Top": 0.23660442233085632,
#         "Width": 0.35611653327941895
#       },
#       "Confidence": 99.99732971191406,
#       "Emotions": [
#         {
#           "Confidence": 99.5849380493164,
#           "Type": "HAPPY"
#         },
#         {
#           "Confidence": 0.15533843636512756,
#           "Type": "CALM"
#         },
#         {
#           "Confidence": 0.08864031732082367,
#           "Type": "SURPRISED"
#         },
#         {
#           "Confidence": 0.05476664379239082,
#           "Type": "SAD"
#         },
#         {
#           "Confidence": 0.042048510164022446,
#           "Type": "CONFUSED"
#         },
#         {
#           "Confidence": 0.038942769169807434,
#           "Type": "DISGUSTED"
#         },
#         {
#           "Confidence": 0.021463459357619286,
#           "Type": "FEAR"
#         },
#         {
#           "Confidence": 0.013858155347406864,
#           "Type": "ANGRY"
#         }
#       ],
#       "Eyeglasses": {
#         "Confidence": 98.5116195678711,
#         "Value": false
#       },
#       "EyesOpen": {
#         "Confidence": 99.65477752685547,
#         "Value": true
#       },
#       "Gender": {
#         "Confidence": 97.1164321899414,
#         "Value": "Female"
#       },
#       "Landmarks": [
#         {
#           "Type": "eyeLeft",
#           "X": 0.6554790735244751,
#           "Y": 0.35153862833976746
#         },
#         {
#           "Type": "eyeRight",
#           "X": 0.7940073609352112,
#           "Y": 0.38292214274406433
#         },
#         {
#           "Type": "mouthLeft",
#           "X": 0.6188991069793701,
#           "Y": 0.46431097388267517
#         },
#         {
#           "Type": "mouthRight",
#           "X": 0.7352844476699829,
#           "Y": 0.490242063999176
#         },
#         {
#           "Type": "nose",
#           "X": 0.7125006914138794,
#           "Y": 0.44607019424438477
#         },
#         {
#           "Type": "leftEyeBrowLeft",
#           "X": 0.6096581220626831,
#           "Y": 0.3071737587451935
#         },
#         {
#           "Type": "leftEyeBrowRight",
#           "X": 0.6628581285476685,
#           "Y": 0.3133310079574585
#         },
#         {
#           "Type": "leftEyeBrowUp",
#           "X": 0.7027584314346313,
#           "Y": 0.33200803399086
#         },
#         {
#           "Type": "rightEyeBrowLeft",
#           "X": 0.7813941240310669,
#           "Y": 0.35023579001426697
#         },
#         {
#           "Type": "rightEyeBrowRight",
#           "X": 0.8213478922843933,
#           "Y": 0.34993964433670044
#         },
#         {
#           "Type": "rightEyeBrowUp",
#           "X": 0.8495538234710693,
#           "Y": 0.36189284920692444
#         },
#         {
#           "Type": "leftEyeLeft",
#           "X": 0.629088282585144,
#           "Y": 0.34286588430404663
#         },
#         {
#           "Type": "leftEyeRight",
#           "X": 0.6820939183235168,
#           "Y": 0.3586524724960327
#         },
#         {
#           "Type": "leftEyeUp",
#           "X": 0.6580297946929932,
#           "Y": 0.3468707501888275
#         },
#         {
#           "Type": "leftEyeDown",
#           "X": 0.6537532210350037,
#           "Y": 0.35663917660713196
#         },
#         {
#           "Type": "rightEyeLeft",
#           "X": 0.7655976414680481,
#           "Y": 0.3776427209377289
#         },
#         {
#           "Type": "rightEyeRight",
#           "X": 0.8166338801383972,
#           "Y": 0.38544225692749023
#         },
#         {
#           "Type": "rightEyeUp",
#           "X": 0.7969376444816589,
#           "Y": 0.37844377756118774
#         },
#         {
#           "Type": "rightEyeDown",
#           "X": 0.7909533977508545,
#           "Y": 0.3877102732658386
#         },
#         {
#           "Type": "noseLeft",
#           "X": 0.6727234721183777,
#           "Y": 0.44030481576919556
#         },
#         {
#           "Type": "noseRight",
#           "X": 0.7237889170646667,
#           "Y": 0.45200300216674805
#         },
#         {
#           "Type": "mouthUp",
#           "X": 0.6882695555686951,
#           "Y": 0.4740942418575287
#         },
#         {
#           "Type": "mouthDown",
#           "X": 0.6720560789108276,
#           "Y": 0.5046101808547974
#         },
#         {
#           "Type": "leftPupil",
#           "X": 0.6554790735244751,
#           "Y": 0.35153862833976746
#         },
#         {
#           "Type": "rightPupil",
#           "X": 0.7940073609352112,
#           "Y": 0.38292214274406433
#         },
#         {
#           "Type": "upperJawlineLeft",
#           "X": 0.5517005324363708,
#           "Y": 0.30355724692344666
#         },
#         {
#           "Type": "midJawlineLeft",
#           "X": 0.5320234894752502,
#           "Y": 0.43352627754211426
#         },
#         {
#           "Type": "chinBottom",
#           "X": 0.6419994831085205,
#           "Y": 0.5531964302062988
#         },
#         {
#           "Type": "midJawlineRight",
#           "X": 0.7752369046211243,
#           "Y": 0.48957017064094543
#         },
#         {
#           "Type": "upperJawlineRight",
#           "X": 0.8515444397926331,
#           "Y": 0.37258899211883545
#         }
#       ],
#       "MouthOpen": {
#         "Confidence": 68.26280212402344,
#         "Value": false
#       },
#       "Mustache": {
#         "Confidence": 99.73213195800781,
#         "Value": false
#       },
#       "Pose": {
#         "Pitch": -11.299633026123047,
#         "Roll": 17.6924991607666,
#         "Yaw": 13.582314491271973
#       },
#       "Quality": {
#         "Brightness": 83.72581481933594,
#         "Sharpness": 67.22731018066406
#       },
#       "Smile": {
#         "Confidence": 98.4793930053711,
#         "Value": true
#       },
#       "Sunglasses": {
#         "Confidence": 99.3582992553711,
#         "Value": false
#       }
#     }
#   ]
# }
# Sample code for parsing the JSON response...
# Use the following online tool to generate parsing code from sample JSON:
# Generate Parsing Code from JSON
i = 0
count_i = jResp.SizeOfArray("FaceDetails")
while i < count_i :
    jResp.I = i
    AgeRangeHigh = jResp.IntOf("FaceDetails[i].AgeRange.High")
    AgeRangeLow = jResp.IntOf("FaceDetails[i].AgeRange.Low")
    BeardConfidence = jResp.StringOf("FaceDetails[i].Beard.Confidence")
    BeardValue = jResp.BoolOf("FaceDetails[i].Beard.Value")
    BoundingBoxHeight = jResp.StringOf("FaceDetails[i].BoundingBox.Height")
    BoundingBoxLeft = jResp.StringOf("FaceDetails[i].BoundingBox.Left")
    BoundingBoxTop = jResp.StringOf("FaceDetails[i].BoundingBox.Top")
    BoundingBoxWidth = jResp.StringOf("FaceDetails[i].BoundingBox.Width")
    Confidence = jResp.StringOf("FaceDetails[i].Confidence")
    EyeglassesConfidence = jResp.StringOf("FaceDetails[i].Eyeglasses.Confidence")
    EyeglassesValue = jResp.BoolOf("FaceDetails[i].Eyeglasses.Value")
    EyesOpenConfidence = jResp.StringOf("FaceDetails[i].EyesOpen.Confidence")
    EyesOpenValue = jResp.BoolOf("FaceDetails[i].EyesOpen.Value")
    GenderConfidence = jResp.StringOf("FaceDetails[i].Gender.Confidence")
    GenderValue = jResp.StringOf("FaceDetails[i].Gender.Value")
    MouthOpenConfidence = jResp.StringOf("FaceDetails[i].MouthOpen.Confidence")
    MouthOpenValue = jResp.BoolOf("FaceDetails[i].MouthOpen.Value")
    MustacheConfidence = jResp.StringOf("FaceDetails[i].Mustache.Confidence")
    MustacheValue = jResp.BoolOf("FaceDetails[i].Mustache.Value")
    PosePitch = jResp.StringOf("FaceDetails[i].Pose.Pitch")
    PoseRoll = jResp.StringOf("FaceDetails[i].Pose.Roll")
    PoseYaw = jResp.StringOf("FaceDetails[i].Pose.Yaw")
    QualityBrightness = jResp.StringOf("FaceDetails[i].Quality.Brightness")
    QualitySharpness = jResp.StringOf("FaceDetails[i].Quality.Sharpness")
    SmileConfidence = jResp.StringOf("FaceDetails[i].Smile.Confidence")
    SmileValue = jResp.BoolOf("FaceDetails[i].Smile.Value")
    SunglassesConfidence = jResp.StringOf("FaceDetails[i].Sunglasses.Confidence")
    SunglassesValue = jResp.BoolOf("FaceDetails[i].Sunglasses.Value")
    j = 0
    count_j = jResp.SizeOfArray("FaceDetails[i].Emotions")
    while j < count_j :
        jResp.J = j
        Confidence = jResp.StringOf("FaceDetails[i].Emotions[j].Confidence")
        v_Type = jResp.StringOf("FaceDetails[i].Emotions[j].Type")
        j = j + 1
    j = 0
    count_j = jResp.SizeOfArray("FaceDetails[i].Landmarks")
    while j < count_j :
        jResp.J = j
        v_Type = jResp.StringOf("FaceDetails[i].Landmarks[j].Type")
        X = jResp.StringOf("FaceDetails[i].Landmarks[j].X")
        Y = jResp.StringOf("FaceDetails[i].Landmarks[j].Y")
        j = j + 1
    i = i + 1 |